Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
ACS Cent Sci ; 10(3): 555-568, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38559311

RESUMO

Myxobacteria are a prolific source of secondary metabolites with sheer chemical complexity, intriguing biosynthetic enzymology, and diverse biological activities. In this study, we report the discovery, biosynthesis, biomimetic total synthesis, physiological function, structure-activity relationship, and self-resistance mechanism of the 5-methylated pyrazinone coralinone from a myxobacterium Corallococcus exiguus SDU70. A single NRPS/PKS gene corA was genetically and biochemically demonstrated to orchestrate coralinone, wherein the integral PKS part is responsible for installing the 5-methyl group. Intriguingly, coralinone exacerbated cellular aggregation of myxobacteria grown in liquid cultures by enhancing the secretion of extracellular matrix, and the 5-methylation is indispensable for the alleged activity. We provided an evolutionary landscape of the corA-associated biosynthetic gene clusters (BGCs) distributed in the myxobacterial realm, revealing the divergent evolution for the diversity-oriented biosynthesis of 5-alkyated pyrazinones. This phylogenetic contextualization provoked us to identify corB located in the proximity of corA as a self-resistance gene. CorB was experimentally verified to be a protease that hydrolyzes extracellular proteins to antagonize the agglutination-inducing effect of coralinone. Overall, we anticipate these findings will provide new insights into the chemical ecology of myxobacteria and lay foundations for the maximal excavation of these largely underexplored resources.

2.
Nat Protoc ; 19(2): 281-312, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38017137

RESUMO

Breeding new and sustainable crop cultivars of high yields and desirable traits has been a major challenge for ensuring food security for the growing global human population. For polyploid crops such as wheat, introducing genetic variation from wild relatives of its subgenomes is a key strategy to improve the quality of their breeding pools. Over the past decades, considerable progress has been made in speed breeding, genome sequencing, high-throughput phenotyping and genomics-assisted breeding, which now allows us to realize whole-genome introgression from wild relatives to modern crops. Here, we present a standardized protocol to rapidly introgress the entire genome of Aegilops tauschii, the progenitor of the D subgenome of bread wheat, into elite wheat backgrounds. This protocol integrates multiple modern high-throughput technologies and includes three major phases: development of synthetic octaploid wheat, generation of hexaploid A. tauschii-wheat introgression lines (A-WIs) and homozygosis of the generated A-WIs. Our approach readily generates stable introgression lines in 2 y, thus greatly accelerating the generation of A-WIs and the introduction of desirable genes from A. tauschii to wheat cultivars. These A-WIs are valuable for wheat-breeding programs and functional gene discovery. The current protocol can be easily modified and used for introgressing the genomes of wild relatives to other polyploid crops.


Assuntos
Aegilops , Triticum , Humanos , Triticum/genética , Aegilops/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Poliploidia
4.
Phytomedicine ; 117: 154903, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301185

RESUMO

BACKGROUND: Phosphorylated Smad3 isoforms are reversible and antagonistic, and the tumour-suppressive pSmad3C can shift to an oncogenic pSmad3L signal. In addition, Nrf2 has a two-way regulatory effect on tumours, protecting normal cells from carcinogens and promoting tumour cell survival in chemotherapeutics. Accordingly, we hypothesised that the transformation of pSmad3C/3L is the basis for Nrf2 to produce both pro- and/or anti-tumourigenic effects in hepatocarcinogenesis. Astragaloside IV (AS-IV), the major component of Astragalus membranaceus, exerts anti-fibrogenic and carcinogenic actions. Lately, AS-IV administration could delay the occurrence of primary liver cancer by persistently inhibiting the fibrogenesis and regulating pSmad3C/3 L and Nrf2/HO-1 pathways synchronously. However, effect of AS-IV on hepatocarcinogenesis implicated in the bidirectional cross-talking of pSmad3C/3 L and Nrf2/HO-1 signalling, especially which one contributes palpably than the other still remains unclear. PURPOSE: This study aims to settle the above questions by using in vivo (pSmad3C+/- and Nrf2-/- mice) and in vitro (plasmid- or lentivirus- transfected HepG2 cells) models of HCC. STUDY DESIGN AND METHODS: The correlation of Nrf2 to pSmad3C/pSmad3L in HepG2 cells was analysed by Co-immunoprecipitation and dual-luciferase reporter assay. Pathological changes of Nrf2, pSmad3C, and pSmad3L in human HCC patients, pSmad3C+/- mice, and Nrf2-/- mice were gauged by immunohistochemical, haematoxylin and eosin staining, Masson, and immunofluorescence assays. Finally, western blot and qPCR were used to verify the bidirectional cross-talking of pSmad3C/3L and Nrf2/HO-1 signalling protein and mRNA in vivo and in vitro models of HCC. RESULTS: Histopathological manifestations and biochemical indicators revealed that pSmad3C+/- could abate the ameliorative effects of AS-IV on fibrogenic/carcinogenic mice with Nrf2/HO-1 deactivation and pSmad3C/p21 transform to pSmad3L/PAI-1//c-Myc. As expected, cell experiments confirmed that upregulating pSmad3C boosts the inhibitory activity of AS-IV on phenotypes (cell proliferation, migration and invasion), followed by a shift of pSmad3L to pSmad3C and activation of Nrf2/HO-1. Synchronously, experiments in Nrf2-/- mice and lentivirus-carried Nrf2shRNA cell echoed the results of pSmad3C knockdown. Complementarily, Nrf2 overexpression resulted in the opposite result. Furthermore, Nrf2/HO-1 contributes to AS-IV's anti-HCC effect palpably compared with pSmad3C/3L. CONCLUSION: These studies highlight that harnessing the bidirectional crosstalk pSmad3C/3 L and Nrf2/HO-1, especially Nrf2/HO-1 signalling, acts more effectively in AS-IV's anti-hepatocarcinogenesis, which may provide an important theoretical foundation for the use of AS-IV against HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Fator 2 Relacionado a NF-E2 , Transformação Celular Neoplásica
5.
J Exp Med ; 220(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37097293

RESUMO

The formation of germinal centers (GCs) is crucial for humoral immunity and vaccine efficacy. Constant stimulation through microbiota drives the formation of constitutive GCs in Peyer's patches (PPs), which generate B cells that produce antibodies against gut antigens derived from commensal bacteria and infectious pathogens. However, the molecular mechanism that regulates this persistent process is poorly understood. We report that Ewing Sarcoma Breakpoint Region 1 (EWSR1) is a brake to constitutive GC generation and immunoglobulin G (IgG) production in PPs, vaccination-induced GC formation, and IgG responses. Mechanistically, EWSR1 suppresses Bcl6 upregulation after antigen encounter, thereby negatively regulating induced GC B cell generation and IgG production. We further showed that tumor necrosis factor receptor-associated factor (TRAF) 3 serves as a negative regulator of EWSR1. These results established that the TRAF3-EWSR1 signaling axis acts as a checkpoint for Bcl6 expression and GC responses, indicating that this axis is a therapeutic target to tune GC responses and humoral immunity in infectious diseases.


Assuntos
Nódulos Linfáticos Agregados , Fator 3 Associado a Receptor de TNF , Antígenos/metabolismo , Linfócitos B , Centro Germinativo , Imunoglobulina G/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Humanos
7.
Anal Chem ; 95(12): 5256-5266, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36917632

RESUMO

Myxobacteria are fascinating prokaryotes featuring a potent capacity for producing a wealth of bioactive molecules with intricate chemical topology as well as intriguing enzymology, and thus it is critical to developing an efficient pipeline for bioprospecting. Herein, we construct the database MyxoDB, the first public compendium solely dedicated to myxobacteria, which enabled us to provide an overview of the structural diversity and taxonomic distribution of known myxobacterial natural products. Moreover, we demonstrated that the cutting-edge NMR-based metabolomics was effective to differentiate the biosynthetic priority of myxobacteria, whereby MyxoDB could greatly streamline the dereplication of multifarious known compounds and accordingly speed up the discovery of new compounds. This led to the rapid identification of a class of linear di-lipopeptides (archangimins) and a rare rearranged sterol (corasterol) that were endowed with unique chemical architectures and/or biosynthetic enzymology. We also showcased that NMR-based metabolomics, MyxoDB, and genomics can also work concertedly to accelerate the targeted discovery of a polyketidic compound pyxipyrrolone C. All in all, this study sets the stage for the discovery of many more novel natural products from underexplored myxobacterial resources.


Assuntos
Produtos Biológicos , Myxococcales , Produtos Biológicos/química , Bioprospecção , Imageamento por Ressonância Magnética , Metabolômica
8.
J Nat Prod ; 86(2): 340-345, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693198

RESUMO

Chemical redundancy of microbial natural products (NPs) underscores the importance to exploit new resources of microorganisms. Insect-associated microbes are prolific but largely underexplored sources of diverse NPs. Herein, we discovered the new compound α-l-rhamnosyl-actiphenol (1) from a millipede-associated Streptomyces sp. ML6, which is the first glycosylated cycloheximide-class natural product. Interestingly, bioinformatics analysis of the ML6 genome revealed that the biosynthesis of 1 involves a cooperation between two gene clusters (chx and rml) located distantly on the genome of ML6. We also carried out in vitro enzymatic glycosylation of cycloheximide using an exotic promiscuous glycosyltransferase BsGT-1, which resulted in the production of an additional cycloheximide glycoside cycloheximide 7-O-ß-d-glucoside (5). Although the antifungal and cytotoxic activities of the new compounds 1 and 5 were attenuated relative to those of cycloheximide, our work not only enriches the chemical repertoire of the cycloheximide family but also provides new insights into the structure-activity relationship optimization and ecological roles of cycloheximide.


Assuntos
Actinobacteria , Glicosilação , Cicloeximida , Actinobacteria/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Glicosídeos
9.
Planta ; 256(2): 39, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35829784

RESUMO

MAIN CONCLUSION: This study suggests that stomatal and leaf structures are highly correlated, and mesophyll cell size is an important anatomical trait determining the coordination between stomatal size and mesophyll porosity. A comprehensive study of the correlations between the structural traits and on their relationships with gas exchange parameters may provide some useful information into leaf development and improvement in efficiencies of photosynthetic CO2 fixation and transpirational water loss. In the present study, nine plant materials from eight crop species were pot grown in a growth chamber. Leaf structural traits, gas exchange, and leaf nitrogen content were measured. We found that stomatal size, mesophyll cell size (MCS), and mesophyll porosity were positively correlated and that the surface areas of mesophyll cells and chloroplasts facing intercellular air spaces were positively correlated with both stomatal density and stomatal area per leaf area (SA). These results suggested that the developments of stomata and mesophyll cells are highly correlated among different crop species. Additionally, MCS was positively correlated with leaf thickness and negatively correlated with leaf density and leaf mass per area, which indicated that MCS might play an important role in leaf structural investments and physiological functions among species. In summary, this study illustrates the correlations between stomatal and mesophyll structures, and it highlights the importance of considering the covariations among leaf traits with the intent of improving photosynthesis and iWUE.


Assuntos
Células do Mesofilo , Estômatos de Plantas , Dióxido de Carbono/metabolismo , Produtos Agrícolas/metabolismo , Células do Mesofilo/metabolismo , Nitrogênio/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Estômatos de Plantas/fisiologia , Água/metabolismo
10.
Nat Cell Biol ; 24(7): 1165-1176, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35773432

RESUMO

CD8+ T cells are central mediators of immune responses against infections and cancer. Here we identified Dapl1 as a crucial regulator of CD8+ T cell responses to cancer and infections. Dapl1 deficiency promotes the expansion of tumour-infiltrating effector memory-like CD8+ T cells and prevents their functional exhaustion, coupled with increased antitumour immunity and improved efficacy of adoptive T cell therapy. Dapl1 controls activation of NFATc2, a transcription factor required for the effector function of CD8+ T cells. Although NFATc2 mediates induction of the immune checkpoint receptor Tim3, competent NFATc2 activation prevents functional exhaustion of CD8+ T cells. Interestingly, exhausted CD8+ T cells display attenuated NFATc2 activation due to Tim3-mediated feedback inhibition; Dapl1 deletion rescues NFATc2 activation and thereby prevents dysfunction of exhausted CD8+ T cells in chronic infection and cancer. These findings establish Dapl1 as a crucial regulator of CD8+ T cell immunity and a potential target for cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Receptor Celular 2 do Vírus da Hepatite A/genética , Humanos , Proteínas de Membrana , Fatores de Transcrição NFATC/genética , Neoplasias/genética , Infecção Persistente , Fatores de Transcrição
11.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074921

RESUMO

Proinflammatory cytokine production by innate immune cells plays a crucial role in inflammatory diseases, but the molecular mechanisms controlling the inflammatory responses are poorly understood. Here, we show that TANK-binding kinase 1 (TBK1) serves as a vital regulator of proinflammatory macrophage function and protects against tissue inflammation. Myeloid cell-conditional Tbk1 knockout (MKO) mice spontaneously developed adipose hypertrophy and metabolic disorders at old ages, associated with increased adipose tissue M1 macrophage infiltration and proinflammatory cytokine expression. When fed with a high-fat diet, the Tbk1-MKO mice also displayed exacerbated hepatic inflammation and insulin resistance, developing symptoms of nonalcoholic steatohepatitis. Furthermore, myeloid cell-specific TBK1 ablation exacerbates inflammation in experimental colitis. Mechanistically, TBK1 functions in macrophages to suppress the NF-κB and MAP kinase signaling pathways and thus attenuate induction of proinflammatory cytokines, particularly IL-1ß. Ablation of IL-1 receptor 1 (IL-1R1) eliminates the inflammatory symptoms of Tbk1-MKO mice. These results establish TBK1 as a pivotal anti-inflammatory mediator that restricts inflammation in different disease models.


Assuntos
Inflamação/etiologia , Inflamação/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Proteínas Serina-Treonina Quinases/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Biomarcadores , Colite/etiologia , Colite/metabolismo , Colite/patologia , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Regulação da Expressão Gênica , Glucose/metabolismo , Hipertrofia , Imunomodulação/genética , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Resistência à Insulina , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Especificidade de Órgãos , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Interleucina-1/deficiência , Transdução de Sinais
12.
Drug Discov Today ; 27(3): 730-742, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34775105

RESUMO

The advantage of metagenomics over the culture-based natural product (NP) discovery pipeline is the ability to access the biosynthetic potential of uncultivable microbes. Advances in DNA sequencing are revolutionizing conventional metagenomics approaches for microbial NP discovery. The genomes of (in)cultivable bugs can be resolved straightforwardly from environmental samples, enabling in situ prediction of biosynthetic gene clusters (BGCs). The predicted chemical diversities could be realized not only by heterologous expression of gene clusters originating from DNA synthesis or direct cloning, but also potentially by bioinformatic-directed organic synthesis or chemoenzymatic total synthesis. In this review, we suggest that metagenomic sequencing in tandem with multidisciplinary approaches will form a versatile platform to shed light on a plethora of microbial 'dark matter'.


Assuntos
Produtos Biológicos , Metagenômica , Produtos Biológicos/metabolismo , Metagenoma , Família Multigênica , Análise de Sequência de DNA
13.
J Genet Genomics ; 49(3): 185-194, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34838726

RESUMO

Aegilops tauschii, the wild progenitor of wheat D-genome and a valuable germplasm for wheat improvement, has a wide natural distribution from eastern Turkey to China. However, the phylogenetic relationship and dispersion history of Ae. tauschii in China has not been scientifically clarified. In this study, we genotyped 208 accessions (with 104 in China) using ddRAD sequencing and 55K SNP array, and classified the population into six sublineages. Three possible spreading routes or events were identified, resulting in specific distribution patterns, with four sublineages found in Xinjiang, one in Qinghai, two in Shaanxi and one in Henan. We also established the correlation of SNP-based, karyotype-based and spike-morphology-based techniques to demonstrate the internal classification of Ae. tauschii, and developed consensus dataset with 1245 putative accessions by merging data previously published. Our analysis suggested that eight inter-lineage accessions could be assigned to the putative Lineage 3 and these accessions would help to conserve the genetic diversity of the species. By developing the consensus phylogenetic relationships of Ae. tauschii, our work validated the hypothesis on the dispersal history of Ae. tauschii in China, and contributed to the efficient and comprehensive germplasm-mining of the species.


Assuntos
Aegilops , China , Genótipo , Filogenia , Poaceae/genética , Triticum/genética
14.
ACS Synth Biol ; 10(11): 2904-2909, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34757714

RESUMO

Genome mining has revealed that myxobacteria contain a myriad of cryptic biosynthetic gene clusters (BGCs). Here, we report the characterization of a panel of myxobacterial promoters with variable strength that are applicable in the engineering of BGCs in myxobacteria. The screened strongest constitutive promoter was used to efficiently enhance the expression of two complex BGCs governing the biosynthesis of myxochromide and DKxanthene in the model myxobacterium Myxococcus xanthus DK1622. We also showcased the combination of promoter engineering and MS2-based spectral networking as an effective strategy to shed light on the previously overlooked chemistry in the family of myxochromide-type lipopeptides. The enriched promoter library substantially expanded the synthetic biology toolkit available for myxobacteria.


Assuntos
Myxococcales/genética , Myxococcales/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Regiões Promotoras Genéticas/genética , Metabolismo Secundário/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Lipopeptídeos/genética , Família Multigênica/genética
15.
Cell Rep ; 37(4): 109904, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34706239

RESUMO

Inflammasomes are crucial for innate immunity against infections and, when deregulated, also contribute to inflammatory diseases. Here, we identify a critical function of the E3 ubiquitin ligase Peli1 in regulating the activation of NLRP3 inflammasome. Peli1 deficiency impairs induction of interleukin-1ß (IL-1ß) secretion by different NLRP3 inducers, but not by inducers of the Aim2, NLRP1, and NLRC4 inflammasomes. Peli1-deficient mice have alleviated peritonitis induction by alum and display increased resistance to lipopolysaccharide (LPS) endotoxin shock, coupled with decreased serum concentration of IL-1ß. Peli1 is required for NLRP3-induced caspase-1 activation and IL-1ß maturation. Mechanistically, Peli1 conjugates K63 ubiquitin chain to lysine 55 of the inflammasome adaptor apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), which in turn facilitates ASC/NLRP3 interaction and ASC oligomerization, thereby contributing to inflammasome activation. Peli1 deficiency impairs the ubiquitination of ASC and inhibits inflammasome activation. Our findings establish Peli1 as an important inflammasome regulator and suggest a mechanism by which Peli1 mediates inflammatory responses.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Nucleares/metabolismo , Multimerização Proteica , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Animais , Linhagem Celular , Humanos , Inflamação/metabolismo , Camundongos , Camundongos Transgênicos
16.
Sci Adv ; 7(36): eabh0609, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516909

RESUMO

Microglia have been implicated in neuroinflammatory diseases, including multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). We demonstrate that microglia mediate EAE disease progression via a mechanism relying on the noncanonical nuclear factor kB (NF-κB) pathway. Microglia-specific deletion of the noncanonical NF-κB-inducing kinase (NIK) impairs EAE disease progression. Although microglial NIK is dispensable for the initial phase of T cell infiltration into the central nervous system (CNS) and EAE disease onset, it is critical for the subsequent CNS recruitment of inflammatory T cells and monocytes. Our data suggest that following their initial CNS infiltration, T cells activate the microglial noncanonical NF-κB pathway, which synergizes with the T cell-derived cytokine granulocyte-macrophage colony-stimulating factor to induce expression of chemokines involved in the second-wave of T cell recruitment and disease progression. These findings highlight a mechanism of microglial function that is dependent on NIK signaling and required for EAE disease progression.

17.
Blood ; 138(23): 2360-2371, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34255829

RESUMO

B-cell-activating factor (BAFF) mediates B-cell survival and, when deregulated, contributes to autoimmune diseases and B-cell malignancies. The mechanism connecting BAFF receptor (BAFFR) signal to downstream pathways and pathophysiological functions is not well understood. Here we identified DYRK1a as a kinase that responds to BAFF stimulation and mediates BAFF-induced B-cell survival. B-cell-specific DYRK1a deficiency causes peripheral B-cell reduction and ameliorates autoimmunity in a mouse model of lupus. An unbiased screen identified DYRK1a as a protein that interacts with TRAF3, a ubiquitin ligase component mediating degradation of the noncanonical nuclear factor (NF)-κB-inducing kinase (NIK). DYRK1a phosphorylates TRAF3 at serine-29 to interfere with its function in mediating NIK degradation, thereby facilitating BAFF-induced NIK accumulation and noncanonical NF-κB activation. Interestingly, B-cell acute lymphoblastic leukemia (B-ALL) cells express high levels of BAFFR and respond to BAFF for noncanonical NF-κB activation and survival in a DYRK1a-dependent manner. Furthermore, DYRK1a promotes a mouse model of B-ALL through activation of the noncanonical NF-κB pathway. These results establish DYRK1a as a critical BAFFR signaling mediator and provide novel insight into B-ALL pathogenesis.


Assuntos
Autoimunidade , Fator Ativador de Células B/imunologia , Leucemia de Células B/imunologia , NF-kappa B/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Tirosina Quinases/imunologia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Linfócitos B/imunologia , Linfócitos B/patologia , Carcinogênese/imunologia , Carcinogênese/patologia , Linhagem Celular Tumoral , Humanos , Leucemia de Células B/patologia , Camundongos , Camundongos Endogâmicos C57BL , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Quinases Dyrk
18.
Pak J Pharm Sci ; 34(1(Special)): 465-472, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34275795

RESUMO

This study aimed to investigate the application effect of tirofiban on percutaneous coronary intervention (PCI) in patients with acute coronary syndrome (ACS) and its postoperative effect on C-X-C motif chemokine ligand 16 (CXCL16) level and myocardial perfusion. A total of 50 cases of patients diagnosed with acute coronary syndrome and treated in Sunshine Union Hospital (Weifang, China) were included in group A and 30 cases of healthy subjects underwent physical examination in our hospital during the same period were enrolled in group B. Tirofiban was used in group A patients during PCI. Clinical efficacy evaluation criteria were used to evaluate the efficacy after treatment. The level of CXCL16 in serum before and after treatment was detected by qRT-PCR. Receiver operating characteristic (ROC) curve was drawn to analyze the value of C-X-C Motif Chemokine Ligand in diagnosing ACS. Before treatment, CXCL16 level in group A was significantly higher than that in group B (p<0.001). After treatment, patients in TMPG grade 3 in group A were significantly increased (p<0.001). Tirofiban could improve myocardial perfusion in patients with ACS after PCI, reduce adverse events and CXCL16 levels. Serum CXCL16 is expected to be a potential diagnostic and therapeutic predictor of ACS.


Assuntos
Síndrome Coronariana Aguda/terapia , Intervenção Coronária Percutânea/métodos , Inibidores da Agregação Plaquetária/uso terapêutico , Tirofibana/uso terapêutico , Síndrome Coronariana Aguda/diagnóstico , Síndrome Coronariana Aguda/metabolismo , Idoso , Estudos de Casos e Controles , Quimiocina CXCL16/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
19.
Nat Plants ; 7(6): 774-786, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34045708

RESUMO

Increasing crop production is necessary to feed the world's expanding population, and crop breeders often utilize genetic variations to improve crop yield and quality. However, the narrow diversity of the wheat D genome seriously restricts its selective breeding. A practical solution is to exploit the genomic variations of Aegilops tauschii via introgression. Here, we established a rapid introgression platform for transferring the overall genetic variations of A. tauschii to elite wheats, thereby enriching the wheat germplasm pool. To accelerate the process, we assembled four new reference genomes, resequenced 278 accessions of A. tauschii and constructed the variation landscape of this wheat progenitor species. Genome comparisons highlighted diverse functional genes or novel haplotypes with potential applications in wheat improvement. We constructed the core germplasm of A. tauschii, including 85 accessions covering more than 99% of the species' overall genetic variations. This was crossed with elite wheat cultivars to generate an A. tauschii-wheat synthetic octoploid wheat (A-WSOW) pool. Laboratory and field analysis with two examples of the introgression lines confirmed its great potential for wheat breeding. Our high-quality reference genomes, genomic variation landscape of A. tauschii and the A-WSOW pool provide valuable resources to facilitate gene discovery and breeding in wheat.


Assuntos
Aegilops/genética , Introgressão Genética , Genoma de Planta , Melhoramento Vegetal/métodos , Triticum/genética , Elementos de DNA Transponíveis , Genética Populacional , Família Multigênica/genética , Filogenia , Proteínas de Plantas/genética , Poliploidia , Locos de Características Quantitativas , Sementes/genética , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA